Systems Research Group (SRG)

This is the website for the Systems Research Group (SRG) at the University of St Andrews. Systems is the largest research area in the School of Computer Science, covering the broad areas of distributed systems, networked systems, sensor systems and data-intensive systems.

The Systems Research Group (SRG) consists of twelve interdisciplinary faculty members, and a large cohort of Research Fellows and PhD students. Our interdisciplinary nature means that we can work on projects which cross multiple areas of systems research, many in collaboration with industry partners. Members of the group have expertise in research areas spanning: data centres, cloud computing, many-core systems, networking, middleware, sensor networking, machine learning, Internet of Things (IoT), autonomic computing and software architectures.

We take a very practical approach to research, by building and evaluating real systems, whilst publishing in many of the top-tiered systems research conferences and journals. SRG research is currently funded through the following organisations:

SRG runs a bi-weekly seminar series every other Thursday at 1pm in JC 1.33B during semester time. There are talks from faculty, research fellows, PhD students and visitors. Please check our exciting schedule.

News and Events

The latest Systems Research Group (SRG) posts from the School of Computer Science blog.

Containers for HPC environments


Rethinking High performance computing Platforms: Challenges, Opportunities and Recommendations, co-authored by Adam Barker and a team (Ole Weidner, Malcolm Atkinson, Rosa Filgueira Vicente) in the School of Informatics, University of Edinburgh was recently featured in the Communications of the ACM and HPC Wire.

The paper focuses on container technology and argues that a number of “second generation” high-performance computing applications with heterogeneous, dynamic and data-intensive properties have an extended set of requirements, which are not met by the current production HPC platform models and policies. These applications (and users) require a new approach to supporting infrastructure, which draws on container-like technology and services. The paper then goes on to describe cHPC: an early prototype of an implementation based on Linux Containers (LXC).

Ali Khajeh-Hosseini, Co-founder of AbarCloud and former co-founder of ShopForCloud (acquired by RightScale as PlanForCloud) said of this research, “Containers have helped speed-up the development and deployment of applications in heterogeneous environments found in larger enterprises. It’s interesting to investigate their applications in similar types of environments in newer HPC applications.


SRG Seminar: Evaluation Techniques for Detection Model Performance in Anomaly Network Intrusion Detection System by Amjad Al Tobi


Everyday advancements in technology brings with it novel challenges and threats. Such advancement imposes greater risks than ever on systems and services, including individual privacy information. Relying on intrusion specialists to come up with new signatures to detect different types of new attacks, does not seem to scale with excessive traffic growth. Therefore, anomaly-based detection provides a promising solution for this problem area.

Anomaly-based IDS applies machine learning, data mining and/or artificial intelligence along with many other methods to solve this problem. Currently, these solutions seem not to be tractable for real production environments due to the high false alarms rate. This might be a result of such systems not being able to determine the point at which an update is required. It is not clear how detection models will behave over time, when traffic behaviour has changed since the last time the model was re-generated.
MORE


SRG Seminar: New Network Functionality using ILNPv6 and DNS by Khawar Shehzad


This research deals with the introduction of a new network functionality based on Identifier-Locator Network Protocol version 6 (ILNPv6), and Domain Name System (DNS). The chosen area of concern is security and specifically mitigation of Distributed Denial of Service (DDoS). The functionality proposed and tested deals with the issues of vulnerability testing, probing, and scanning which directly lead to a successful DDoS attack. The solutions presented can be used as a reactive measure to these security issues. The DDoS is chosen because in recent years DDoS have become the most common and hard to defend attacks. These attacks are on the availability of system/site. There are multiple solutions in the literature but no one solution is based on ILNPv6, and are complex in nature. Similarly, the solutions in literature either require modification in the providers’ networks or they are complex if they are only site-based solutions. Most of these solutions are based on IPv6 protocol and they do not use the concept of naming, as proposed by ILNPv6.

The prime objectives of this research are:

  • to defend against DDoS attacks with the use of naming and DNS
  • to increase the attacker’s effort, reduce vulnerability testing, and random probing by attackers
  • to practically demonstrate the effectiveness of the ILNPv6-based solution for security